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ABSTRACT: Main purpose of this article is to have a posterior distribution of the model structural 
parameters in the regression model with elliptical measurement error based on prior distribution and 
considering the previous one was gained multivariable β it is not easy to produce data from it to measure 
the previous distribution mean. So we use Gibbs sampling method stated by Arellano and 
Bolfarine(1998). Finally we stated an application of the regression model. 
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INTRODUCTION 
 

 In this article we examine one variable regression of response ‘y’ on the random variable ξ under observations 
of *(     )   (     )+ which   (        )

   measures the quantity   (        )  with the measurement error. 
Now we suppose that *(     )   (     )+ observations come from a model with a measurement error shown by 
following equations :  
             
     

                                                         
where   (       )

 ,   (       )  ,   (       )  and     is component   of a vector as    (     )  .  
   Having supposed that the measurement errors have been distributed normally Lindley & El-Sayyad (1968) 
examined the model. Also the state was discussed by many scientists. You may refer to Kendal and Stuart (1961), 
Johnston(1963) and Mandansky(1959) for more details. The essential supposition is that the measurement errors 

have elliptical distribution. Hereafter    (     ) is symbol of n-variable elliptical distribution with      mean and 

     dispersion matrix  , and density materials function  ( ) , if and only if its probable density is: 
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where  ( )  (   ) | |  (   )  and  ( ) should be nonnegative function and be right in the condition:  
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   Now, we suppose that the regression model errors have following conditional distribution:  
(   )|            (      (  

       
    )  )                               

Having supposed that (     ) has squared radial distribution Vidal and Arellano-Valle did the Bayes inference on 
the model (1) and (2). Now suppose following the elliptical model :  
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where h is generating function and      and      are clear and    
(  |    )

 is the conditional generating function 

of the next  2n and previous distribution   is a squared radial function with ‘d’ freedom degree. By virtue of the 

model (5)-(3) Vidal & Arellano-Valle proved that the posterior distribution  (         )  is as follows:  

 (   |     )  (  ‖    ‖  ‖   ‖ ) 
    

  (   |   ) 
where   (     ) and   ,    - .By integrating   on parameter it is possible to have marginal distribution   as 

follows : 

 ( |     )  .  
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Posterior Average of Structural Parameters 
In this section supposing is unknown and the usual a priori distribution the Bayes model has been given in (3)-(5):  

 ( )           
Now we should find complete conditional algorithm for Gibbs algorithm and estimate a priori average estimation β. 

Supposing the non-information posterior distribution  ( )           for α we have: 
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which is the gamma – gamma distribution kernel with following parameters:  

  [  ⁄      (    
 )  ‖    ‖   

 
    ]. 

If    (   )     (   ) ,   ( |     )  is appropriate distribution. Now considering the β is multivariable it is 
uneasy to produce data from it to be able to estimate the posterior distribution average . So we use Gibbs sampling 
method. Algorithm is a device to produce random data from multivariable distribution from which it is uneasy to 

produce data. Here we may use Gibbs algorithm in detail. We put     ̂   for           and produce two following 
steps::  

 
      ( |        )

      ( |      )
 

This algorithm is stated in Vidal and Bolfarine (2011). In next section we examine the findings on real data. 
 
Examining scientific production data  
 In this section we examine the findings on real data. Here we use the model defined in (1) . The data in 
following Table show two variables: Nos. of the articles and score of participation in M.A. (M.S.) thesis. The data 
are about 17 members of scientific board in one centre of Payame Noor University in 2011. The members scientific 
productions depend on several factors , but their professional and internal motives to do and create science vary . 
It should be emphasized that if such activities are always protected, related participation and scientific productions 
increase, too. So we consider financial factors with participation variable in M.A. (M.S.) theses like X and   relation 
in the (1) relations we may have a more exact model for   and Y.  
 

Table 2. Raw Data and Statistical Descriptive 

Row 1 2 3 4 5 6 7 8 9 

Y 29 17 5 7 27 23 1 4 4 
X 34.5 28 22 22 61.5 44.0 24.0 21.5 12.0 
Row 10 11 12 13 14 15 16 17  

Y 18 2 4 2 11 0 4 0  
X 42.5 55.5 5.0 0.0 0.0 4.0 4.0 7.5  

Variable Minimum 1
st
 quartile Medium Average 3

rd
 quartile Maximum 

X 0 7.50 24 28.62 44 75.50 
Y 0 2 4 9.23 17 29 

X: Number of articles         Y: Score of participation in thesis 

 

 In first step the correlation between X and Y was gained as 0.4201769. The model in the example is the 
elliptical model defined in (3)-(5). Also the samples were gained from posterior distribution β by Gibbs algorithm. 
The figure 1 is the dispersion of all data with three fitting lines according to three maximum likelihood methods with 
the total least errors squares and Bayes method . 
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Figure 1. Scientific Productions Rate 

 
 As you see in Figure (6-4) two maximum likelihood estimation fitting lines and total least errors squares are 
intersected; it might be seen in previous example, too .In Table (5-4) it may be seen the estimations by three 
mentioned methods. In third column of the Table (5-4) low error square average MSE indicates the model gained 
by PME with a very little difference from the Model LSE is better than two other models.  
 

Table 4. The rates estimated by regression parameters 

 Β0 Β1 MSE 

MLE 3.43951 0.20458 321.1932 
LSE 4.25631 0.17603 296.1852 

PME 4.27037 0.17367 176.0832 

 
As it is clear from Table (4) the Bayes estimation rate is near the total least errors squares described analytically in 
section (3-4).  
 

Table 5. Regression Parameters Summary : 

  Average Medium Standard deviation 

Metropolis- Within-Gibbs 
Β0 4.27037 4.23148 0.01468 

Β1 0.17367 0.17459 0.00052 

 
We drew the Β0  posterior distribution histogram by software ‘F’ and showed that it has symmetric distribution . 

 
Figure 2. Β0 posterior distribution histogram 

 
 
 
Figure (2–4): We drew Β1 posterior distribution histogram; here it may be seen the symmetry.  
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Figure 3: Β1 posterior distribution histogram 

 
Figure (4) shows the Β0 changes and rates. Here it may be seen the Β0 distribution symmetry, too. 

 

 
Figure 4. T the Β0 changes and rates 

 
Figure (5) shows the Β1 changes and rates. Here it may be seen the Β1 distribution symmetry, too. 

 
Figure 5. The Β1 changes and rates 

 
Findings  
 The main purpose is to find a regression model by two visible variables with an average in which no common 
relation with third variable is visible. In recent applied subject it was shown that the regression model gained by 
posterior data distribution may be a linear model with the least error squares method. If there are more 
comprehensive and better knowledge about the variables Β1 and Β1 behavior and the posterior distribution is more 
proper, the findings are more exact.  
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